.

Monday, June 3, 2019

Design of 4 Line Private Exchange Box

Design of 4 Line Private Exchange Box entrance1.0 INTRODUCTIONPrivate forking exchange system (PBXs) operates as a get in touchion in spite of appearance tete-a-tete nerves norm eachy a business. Beca rehearse they incorporate screams, the general term perpetuation is utilise to refer to each(prenominal) end point on the branch. The PBX handles covers amongst these extensions. The primary advantage of PBXs was cost savings on cozy ph superstar margin calls intervention the traffic circle fault locally reduced charges for local anticipate services. The hidden branch exchange (PBX) provides internal station-to-station communications for a well-defined set of users. triad distinct generations of private branch exchanges ingest appe ard. In the first generation (1900-1930), a humans operator manually set up calls. Second-generation private branch exchanges (mid-1930s to mid-1970s) used machinelike relays to establish the call path. The third generation of private branch exchanges is the stored-program microprocessor-controlled system. Introduced in the mid-1970s, these systems use calculating machine instructions to per version the call set-up and tear-down. The third-generation private branch exchange is physically much smaller than electromechanical models, uses less power, and generates less heat.(Brooks, 1999)In this make, the design of a 4 breeze squall systems with practiced signaling and refillinging functions similar to those of the substitution office systems was embarked upon. Dial t oneness, busy tone, and ring tone be provided during call process. Switching employs integrated lap covering (IC) ground substance projectes on four buses. Thus, this system is expand equal to(p) to 8 distinctions (4 checks) if more hardw ar is geted. This system is switching on the Dual Tone Multi Frequency (DTMF) dialing signal.1.1 STATEMENT OF difficultyThe major problems this project intends to deal with areCut down cost of internal calls made within a company.Eliminate the need for a central hollo company to help you monitor your internal calls.Eliminate Stress of notification of peal company each time you need a refreshful extension and thereby reducing cost.Ensure security of your internal calls which otherwise hindquarters be tipped by company operating it.Eliminate the need for a manual switchboard and concomitantly an operator to connect the calls.Reduce man-hours lost through staff walking ab erupt in an office in format to pass information to each other.1.2 AIMS AND OBJECTIVESThe chief(prenominal) aim of this project is to design and implement a 4 line private exchange box that is able to create connection between four different headphone lines internally with let on having to connect to an outside(a) or dust line.The objectives includeEstablishing connections between the telephone sets of any two users. (e.g. mapping a dialed get along to a physical phone)Maintaining such(prenominal) connec tions as long as the users require them. (i.e. channeling voice signals between the users)Creating an easy essence of communication in an office without getting to spend money for their internal calls.To switch between telephone users thereby creating connections.To make sure the connection corpse in place as long as it last, by keeping its resources.To properly end the connection when a user hangs up.1.3 SIGNIFICANCE OF STUDYThe exponent or concept of providing an easy and less expensive way of communication within a small office or organization without having to pay for your internal calls or having limits to the rate or length of calls within the office. Also it is not necessary to go from office to office when somewhatthing is needed, information is to be passed a call to a colleague saves stress of walking about.1.4 SCOPE OF STUDYThe Private Exchange System in this project is limited to a four lines which content that internal calls open fire be made from only four nodes. As such, it is only suitable for very small organization.1.5 RESEARCH METHODOLOGYThe review of breathing and related plant life to source appropriate information on how to go about the implementation of the project will be carried out. Information shall be collected from text books, magazines, journals, and World Wide Web to provide answers in relation to the study. Based on the review, the design and implementation of a four line private exchange box system shall be carried out.1.6 LIMITATIONS OF STUDY on that point are several(prenominal) factors that could contribute to the group not delving deeper into this project which could have essenceed in a more comprehensive work. Constraints are unavoidable in any system, be it a natural system or a computer system. Due to the extensiveness of this project topic, limitations were encountered some of which includeTime constraint.Financial constraints.Inadequate facilities to work with.1.7 ORGANIZATION OF WORKIn chapter one, the resear ch topic is introduced, which is followed by the statement of problem later which the aims and objectives of the study are stated, significance of study, scope of study and research methodology are all identified. The second chapter gives us a view of the related works which have been done and how they are related to our work. The third chapter is about our design methodology and this emphasizes on how the whole private exchange system works and its components. The pure tone of the system is tested and documented in chapter four. Also in chapter four, an in-depth manual of the system functions and contents is given. A summary of all chapters, a conclusion is outlined in chapter five.CHAPTER TWOLITERATURE REVIEW2.0 HISTORY OF PRIVATE EXCHANGE BOXIn the field of telecommunications, a telephone exchange or telephone switch is a system of electronic components that connects telephone calls. A central office is the physical building used to house in spite of appearance plant equipmen t including telephone switches, which make phone calls work in the sense of making connections and relaying the linguistic communication information. Early telephone exchanges are a suitable example of circuit switching the subscriber would ask the operator to connect to another subscriber, whether on the same exchange or via an inter-exchange link and another operator. In any case, the end issuance was a physical galvanical connection between the two subscribers telephones for the duration of the call. The copper wire used for the connection could not be used to defy other calls at the same time, even if the subscribers were in fact not talking and the line was silent.The first telephone exchange opened in innovative Haven, Connecticut in 1878. The switchboard was built from carriage bolts, handles from tea pot lids and bustle wire and could handle two simultaneous conversations. Later exchanges consisted of one to several hundred plug boards staffed by telephone operators. Ea ch operator sat in front of a vertical panel containing banks of -inch tip-ring-sleeve (3-conductor) jacks, each of which was the local line of a subscribers telephone line. In front of the jack panel lay a horizontal panel containing two rows of patch cords, each pair affiliated to a cord circuit. When a calling party lifted the receiver, a signal lamp near the jack would light. The operator would plug one of the cords (the tell cord) into the subscribers jack and switch her headset into the circuit to ask, number please? Depending upon the answer, the operator might plug the other cord of the pair (the doughnut cord) into the called partys local jack and run the ringing cycle, or plug into a trunk circuit to start what might be a long distance call handled by subsequent operators in another bank of boards or in another building miles away.2.1 PBX SYSTEM COMPONENTSPBX is a telephone exchange serving a one organization and having no means for connecting to a public telephone s ystem it serves a user company which wants to have its own communication branch to save some money on internal calls. This is done by having the exchanging or switching of circuits done locally, inside the company. There are some important components which play a major role in the implementation of an effective PBX system.Some of the ComponentThe PBXs internal switching network.Central processor unit (CPU) or computer inside the system, including memory.Logic cards, switching and control cards, power cards and related devices that facilitate PBX operation.Stations or telephone sets, sometimes called lines.Outside Telco trunks that go to bed signals to (and carry them from) the PBX.Console or switchboard haves the operator to control incoming calls.Uninterruptible Power Supply (UPS) consisting of sensors, power switches and batteries.Interconnecting wiring.Cabinets, closets, vaults and other housings.2.2 PRIVATE BRANCH EXCHANGE (PBX)There are es directially three different types of PBXs that could be deployed within an organization infrastructure. It is necessary to be indisputable of type in use, so as to be able to identify the es moveial numbers.There are really three different PBX classesCentrex straightaway Inward Dialing (DID)/ ask Outward Dialing (DOD) and Megalink.2.2.1 CENTREXCentrex is the easiest of the PBX types. This PBX, unlike other types is installed within the telephone companys Central Office (CO) and does not require dialing an extension code (normally 4 numeric characters) after having dialed the 7 to 10 digit number to connect a call to an individual. In a simplistic manner, it could be considered similar to the telephone used at home. It has an area code (NPA), an Exchange (NXX) and a rummy Number, (0000 to 9999) and does not require the dialling of another number after it in order to place a call. These numbers may be entered through a PAD.2.2.2 Direct Inward Dialing(DID)/ Direct Outward Dialing (DOD)Unlike a Centrex, these types of PBXs is not installed within the telephone companys Central Office. Secondly, if a cut of the telephone wire occurs outside the building, individuals are still able to dial within it to talk to colleagues by simply dialing their extension number (normally a number between 0000 to 9999) lastly this PBX is controlled via a computer port at a control console. Since the PBX requires constant power to function, it may be necessary to hook it with generating plant, in the absence of power from electricity company.Direct Inward Dialing (DID) and Direct Outward Dialing (DOD) are simply features of an Automated PBX which require that you dial the companys general telephone number followed by the entry of the individuals extension number when prompted to do so. DIDs allow you direct dialing (seven digits) to locate an individual within an organizations PBX. It is a trunk phone number that must be entered into the PAD program and flagged as a PBX to ensure that the outgoing line(s) get priori ty.PBXs may be privately owned or telecommunication company owned. If PBX is programmable it is possible to assign specific trunk lines to specific numbers. These trunk line numbers may and so be entered on PAD thus providing dial tone protection.2.2.3 MEGALINKSThe major difference between this and a Centrex PBX is that the exiting trunk lines from a building to the telephone company central office are comprised of fibre optic cables and not through twisted pair wiring. Another difference is that unlike a Centrex that is identified by its ten digit telephone number (NPA, NXX, and Unique), Megalinks are identified by a circuit ID number. This number may contain characters and may even resemble a telephone number, however, PAD does not allow for the entry of the circuit switch identifier. The modestness is quite simple, fibre optic cabling circuits can handle far more traffic than twisted pair PBXs.2.3 INTERFACE STANDARDSInterfaces for connecting extensions to a PBX includePOTS (Pla in Old recollect System) the common two-wire interface used in nigh homes. This is cheap and effective, and allows almost any standard phone to be used as an extension.Proprietary the producer has defined a protocol. One can only connect the manufacturers sets to their PBX, but the benefit is more visible information displayed and/or specific function buttons.DECT a standard for connecting cordless phones.Internet Protocol For example, H.323 and SIP.Interfaces for connecting PBXs to each other includeProprietary protocols if equipment from several manufacturers is on site, the use of a standard protocol is required.QSIG for connecting PBXs to each other, usually runs over T1 (T-carrier) or E1 (E-carrier) physical circuits.DPNSS for connecting PBXs to trunk lines. Standardised by British Telecom, this usually runs over E1 (E-carrier) physical circuits.Internet Protocol H.323, SIP and IAX protocols are IP based solutions which can handle voice and multimedia (e.g. video) ca lls.Interfaces for connecting PBXs to trunk lines includeStandard POTS (Plain Old Telephone System) lines the common two-wire interface used in most domestic homes. This is adequate only for smaller systems, and can suffer from not being able to detect incoming calls when trying to make an outgoing call.ISDN the most common digital standard for fixed telephony devices. This can be supplied in either Basic (2 circuit capacity) or Primary (24 or 30 circuit capacity) versions. Most medium to large companies would use Primary ISDN circuits carried on T1 or E1 physical connections.RBS (Robbed bit signaling) delivers 24 digital circuits over a four-wire (T1) interface.Internet Protocol H.323, SIP, MGCP, and Inter-Asterisk eXchange protocols operate over IP and are supported by some network providers.Interfaces for collecting data from the PBXSerial interface historically used to print every call record to a serial printer. Now an application connects via serial cable to this port.N etwork Port (Listen mode) where an external application connects to the TCP or UDP port. The PBX then starts streaming information down to the application.Network Port (Server mode) The PBX connects to another application or buffer.File The PBX generates a accuse containing the call records from the PBX.The call records from the PBX are called SMDR, CDR, or CIL. (Micheal, 1999)2.4 TELEPHONETelephone is one of the most amazing devices ever created. Although most people take it completely for granted, the telephone is one of the most amazing devices ever created. To talk to someone, just pick up the phone and dial a few digits connection will be established with the person and a two-way conversation can take place. It is an instrument intentional for simultaneous transmission and reception of the human voice. It works by converting the audio waves of the human voice to pulses of electrical current, transmitting the current, and then retranslating the current back to sound. The U .S. patent granted to Alexander Graham Bell in 1876 for create a device to transmit speech sounds over electric wires is often called the most valuable ever issued. Within 20 years, the telephone acquired a form that has remained fundamentally unchanged for more than a century. The advent of the transistor (1947) led to lightweight, compact circuitry . Advances in electronics have allowed the introduction of a number of smart features such as automatic redialing, caller identification, call waiting, and call forwarding. The figure 2.1 shows the major components that makes up a telephone set.2.5 HOW TELEPHONE WORKSWhen a person speaks into a telephone, the sound waves created by his voice enter the mouthpiece. An electric current carries the sound to the telephone of the person he is talking to. A telephone has two main parts (1) the transmitter and (2) the receiver.The Transmitter of a telephone serves as a sensitive electric ear. It lies behind the mouthpiece of the phone. Like th e human ear, the transmitter has 14 eardrum. The eardrum of the telephone is a thin, round metal disk called a midsection. When a person talks into the telephone, the sound waves strike the middle and make it vibrate. The diaphragm vibrates at mixed speeds, depending on the variations in air pressure caused by the varying tones of the speakers voice. Behind the diaphragm lies a small cup filled with particular grains of carbon. The diaphragm presses against these carbon grains. Low voltage electric current travels through the grains. This current comes from batteries at the telephone company. The pressure on the carbon grains varies as sound waves make the diaphragm vibrate. A loud sound causes the sound waves to push hard on the diaphragm. In turn, the diaphragm presses the grains tightly together. This action makes it easier for the electric current to travel through, and a large amount of electricity flows through the grains. When the sound is soft, the sound waves push lightl y on the diaphragm. In turn, the diaphragm puts only a light pressure on the carbon grains. The grains are pressed together loosely. This makes it harder for the electric current to pass through them, and less current flows through the grains.Thus, the precedent of the sound waves determines the pressure on the diaphragm. This pressure, in turn, regulates the pressure on the carbon grains. The crowded or loose grains cause the electric current to become stronger or weaker. The current copies the pattern of the sound waves and travels over a telephone wire to the receiver of another telephone.The Receiver serves as an electric mouth. Like a human voice, it has vocal cords. The vocal cords of the receiver are a diaphragm. Two magnets located at the edge of the diaphragm cause it to vibrate. One of the magnets is a indissoluble magnet that constantly holds the diaphragm close to it. The other magnet is an electromagnet. It consists of a piece of iron with a coil of wire wound around it. When an electric current passes through the coil, the iron core becomes magnetized. The diaphragm is pulled toward the iron core and away from the permanent magnet. The pull of the electromagnet varies between strong and weak, depending on the variations in the current. Thus, the electromagnet controls the vibrations of the diaphragm in the receiver.The electric current passing through the electromagnet becomes stronger or weaker according to the loud or soft sounds. This action causes the diaphragm to vibrate according to the speakers speech pattern. As the diaphragm moves in and out, it pulls and pushes the air in front of it. The pressure on the air sets up sound waves that are the same as the ones sent into the transmitter. The sound waves strike the ear of the listener and he hears the words of the speaker. (www.howstuffworks.com)2.6 THE RINGERSimply speaking this is a device that alerts you to an incoming call. It may be a bell, light, or warbling tone. The ringing signal is in an AC wave form. Although the common frequency used can be any frequency between 15 and 68 Hz. Most of the world uses frequencies between 20 and 40 Hz. The voltage at the subscribers end depends upon loop length and number of ringers attached to the line it could be between 40 and 150 Volts.The ringing cadence (the timing of ringing to pause), varies from company to company. In the United States the cadence is normally 2 seconds of ringing to 4 seconds of pause. An unanswered phone in the United States will keep ringing until the caller hangs up. But in some countries, the ringing will time out if the call is not answered. The most common ringing device is the bell ringer a solenoid coil with a clapper that strikes either a single or double bell. A gong ringer is the loudest signaling device that is solely phone-line powered.Modern telephones tend to use warbling ringers, which are usually ICs powered by the rectified ringing signal. The audio transducer is a small loudspeak er via a transformer.Ringers are isolated from the DC of the phone line by a capacitor. bell ringers in the United States use a 0.47 uF capacitor. Warbling ringers in the United States generally use a1.0 uF capacitor. Telephone companies in other parts of the world use capacitors between 0.2 and 2.0 uF. The paper capacitors of the past have been replaced almost exclusively with capacitors made of Mylar film. Their voltage rating is always 50 Volts. The capacitor and ringer coil, or Zeners in a warbling ringer, constitute a resonant circuit. When phone is hung up (on hook) the ringer is across the line and it has merely silenced the transducer, not removed the circuit from the line. When the telephone company uses the ringer to test the line, it sends a low-voltage, low frequency signal down the line (usually 2 Volts at 10 Hz) to test for continuity. The company compares result with the expected signals of the line. This is how it can tell whether an added equipment is on the line. If your telephone has had its ringer disconnected, the telephone company cannot detect its presence on the line.Because there is only a certain amount of current available to drive ringers, if ringers are added to phone lines indiscriminately, a point will be reached at which either all ringers will wind up to ring, some will cease to ring, or some ringers will ring weakly. A normal ringer is defined as a standard gong ringer as supplied in a phone company standard desk telephone Value given to this ringer is Ringer Equivalence Number (REN) 1. It can be as high as 3.2, which means that device consumes the equivalent power of 3.2 standard ringers, or 0.0, which means it consumes no current when subjected to a ringing signal. If there is a problem with ringing, it could be that the REN is greater than 5, disconnecting ringers until REN is at 5 or below will usually solve the problem. Other countries have various ways of expressing REN, and some systems will handle no more than three of their standard ringers. But whatever the system, if an extra equipment was added and the phones stop ringing, or the phone say machine wont pick up calls, the solution is disconnect ringers until the problem is resolved. Warbling ringers tend to draw less current than gong ringers, so changing from gong ringers to warbling ringers may help spread the sound better.Frequency response is the second criterion by which a ringer is described. Because a ringer is supposed to oppose to AC waveforms, it will tend to suffice to transients (such as switching transients) when the phone is hung up, or when the rotary dial is used on an extension phone. This is called bell rap music in the United States in other countries, its often called bell tinkle. WhileEuropean and Asian phones tend to bell tap, or tinkle, United States ringers that bell tap are considered defective. The bell tap is designed out of gong ringers and fine tuned with bias springs. Warbling ringers for use in the United S tates are designed not to respond to short transients this is usually accomplished by rectifying the AC and filtering it before it powers the IC, then not switching on the output stage unless the voltage lasts long generous to charge a second capacitor.(Roberts, 2006)2.7 HOOK SWITCHThis is a lever that is depressed when the handset is resting in its cradle. It is a two-wire to four-wire converter that provides conversion between the four-wire handset and the two-wire local loop. There are two stages, which are off hook and on hook Off hook The state of a telephone line that allows dialing and transmission but prohibits incoming calls from being answered. The phone is off-hook when the handset is removed from the base unit of a stationary phone or press prattle on a portable phone. The term stems from the days when the handset was lifted off an actual hook. When the handset was removed, a spring caused contacts to press together, closing the circuit from the telephone to the switch board.On hook The condition that exists when a telephone or other user instrument is not in use, i.e., when idle waiting for a call. Note on-hook originally referred to the storage of an idle telephone reciever, i.e., separate earpiec, on a swithch hook. The weigth of the recieved depresses the sping leaded switch hook thereby disconnecting the idle instrument (except its bell) from the telephone line. (Roberts, 2006)2.8 THE DIALThere are two types of dials in use around the world. The most common one is called pulse, loop disconnect, or rotary the oldest form of dialing, its been in use since the 1920s. The other dialing method, is called Touch-tone, Dual Tone Multi-Frequency (DTMF)Pulse dialing is traditionally accomplished with a rotary dial, which is a speed governed wheel with a cam that opens and closes a switch in series with the phone and the line. It works by actually disconnecting or hanging up the telephone at specific intervals. The United States standard is one disconn ect per digit, so if a 1, is dailled, the telephone is disconnected once. To dial a seven means that it will be disconnected seven times and dialling a zero means that it will hang up ten times. Some countries invert the system so 1 causes ten disconnects and 0, one disconnect. Some add a digit so that dialing a 5 would cause six disconnects and 0, eleven disconnects. There are evensome systems in which dialing 0 results in one disconnect, and all other digits are plus one, making a 5 cause six disconnects and 9, ten disconnects.Although most exchanges are quite joyous with rates of 6 to 15 Pulses Per Second (PPS), the phone company accepted standard is 8 to 10 PPS. Some modern digital exchanges, free of the mechanical inertia problems of older systems, will accept a PPS rate as high as 20. Besides the PPS rate, the dialing pulses have a make/break ratio, usually described as a percentage, but sometimes as a straight ratio. The North American standard is 60/40 percent most of Euro pe accepts a standard of 63/37 percent. This is the pulse measured at the telephone, not at the exchange, where its somewhat different, having traveled through the phone line with its distributed resistance, capacitance, and inductance. In practice, the make/break ratio does not seem to affect the performance of the dial when attached to a normal loop. However,each pulse is a switch connect and disconnect across a complex impedance, so the switching transient often reaches 300 Volts. Usually, a safe practice is not to have fingers across the line when dialing.Most pulse dialing phones produced today use a CMOS IC and a severaliseboard. Instead of pushing finger round in circles, then removing finger and waiting for the dial to return before dialing the next digit, the button can be punched as fast as desired. The IC stores the number and pulses out the number at the correct rate with the correct make/break ratio and the switching is done with a high-voltage switching transistor. Be cause the IC has already stored the dialed number in order to pulse it out at the correct rate, its a simple matter for telephone designers to keep the memory alive and allow the telephone to store, recall, and redial the Last Number Dialed (LND). This feature enables easy redial by picking up the handset and pushing just one button.Touch tone is the most modern form of dialing. It is fast and less prone to error than pulse dialing. Compared to pulse, its major advantage is that its audio band signals can travel down phone lines further than pulse, which can travel only as far as the local exchange. Touch-tone can therefore send signals around the world via the telephone lines, and can be used to control phone answering machines and computers.Bell Labs developed DTMF in order to have a dialing system that could travel across atomize links and work rapidly with computer controlled exchanges. Each transmitted digit consists of two separate audio tones that are mixed together. The fou r vertical columns on the keypad are known as the high group and the four horizontal rows as the low group the digit 8is composed of 1336 Hz and 852 Hz. The level of each tone is within 3 dB of the other. A complete touch-tone pad has 16 digits, as opposed to ten on a pulse dial. Besides the numerals 0 to 9, a DTMF dial has *, , A, B, C, and D. Although the letters are not normally found on consumer telephones, the IC in the phone is fit of generating them.The * sign is usually called star or asterisk. The sign, often referred to as the pound sign. is actually called an octothorpe. Although many phone users have never used thesedigits they are not, after all, ordinarily used in dialing phone numbers. They are used for control purposes, phone answering machines, bringing up remote bases, electronic banking, and repeater control. The one use of the octothorpe that may be familiar occurs in dialing international calls from phones. After dialing the complete number, dialing the octot horpe lets the exchange know youve finished dialing. It can now begin routing your call without the octothorpe, it would wait and time out before switching your call.Standard DTMF dials will produce a tone as long as a key is depressed. No matter how long you press, the tone will be decoded as the appropriate digit. The shortest duration in whicha digit can be sent and decoded is about 100 milliseconds (ms). Its pretty difficult to dial by hand at such a speed, but automatic dialers can do it. A twelve-digit long distance numbercan be dialed by an automatic dialer in a little more than a second about as long as it takes a pulse dial to send a single 0 digit.(Roberts,2006)2.9 MODULAR CONNECTORSModular connector is the name given to a family of electrical connectors that were originally used in telephone wiring. Even though they are still used for that purpose they are used for a regeneration of other things as well. A standard connectors advantage over many other kinds include sma ll size and ease of plugging and unplugging. Many uses that originally used a bulkier connector have migrated to modular connectors. Probably the most well known applications of modular connectors is for telephone jacks and for ethernet jacks, which are nearly always modular connectors. Figure 2.2 shows types of connectors commonly used.Modular connectors were first used in the registered jack system, so registered Jack specifications describe them precisely. These are the specifications to which all practical modular connectors are built.Modular connectors come in four sizes 4-, 6-, 8-, and 10-position. A position is a place that can hold a conductor (pin). The positions need not all be used a connector can have any even number of conductors. Unused positions are usually the outermost positions. The connectors are designed so that a plug can fit into any jack that has at least the number of positions as the plug. Where the jack has more positions than the plug, the outermost positi ons are unused. However, plugs from different manufacturers may not have this compatibility, and some manufacturers of eight position j

No comments:

Post a Comment